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Abstract
We study the properties of a few-electron system confined in coupled elongated quantum dots
(QDs) using a model Gaussian potential and the numerical exact diagonalization technique. In
the absence of magnetic fields, as the aspect ratio r between the QD extensions in the directions
perpendicular and parallel to the coupling directions increases, the exchange energy exhibits a
sharp variation at the specific value r = 3.9, before (after) which the exchange energy increases
(declines). The sharp variation occurs because of a sudden change in the single-particle
configuration of the triplet state. The stability region with one electron in each of the QDs is
found to shrink, and finally vanishes as it becomes progressively easier to localize both
electrons into the QD with the lower electron potential energy. For r > 3.9, the first
singlet–triplet transition shifts to a small magnetic field.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Coupled quantum dots (QDs) based on two-dimensional
electron gas (2DEG) formed with GaAs/AlGaAs heterostruc-
tures are promising candidates for quantum logic applications
because of the ability to coherently manipulate the many-
body spin states by using external electromagnetic fields [1–3].
Recently, a coherent controlled cycle of many-body state
preparation, spin interaction and projective read-out has been
achieved in laterally coupled QDs [4]. In such an experiment,
the electromagnetic control of the exchange energy J , which
drives the Rabi oscillations between the lowest singlet and
triplet states, is of utmost importance. It is well known that the
hyperfine interaction between the electron and nuclear spins
competes with the exchange energy to destroy the singlet–
triplet coherence [5]. Therefore, in order to retain the spin-
state coherence in coupled GaAs/AlGaAs QDs, it is important
to optimize the exchange energy to exceed the hyperfine
interaction significantly.

A wealth of theoretical work has been devoted to study
the exchange energy in coupled QD systems [6–13]. The main
focus of these studies is the tunability of the exchange energy

by the electromagnetic fields and/or the parameters defining
the interdot coupling strength, e.g. interdot separation and
barrier height. The optimization of the exchange coupling
J—given a fixed interdot distance, which is predetermined by
the lithography of the top gates—has been rarely discussed.
In this work, we investigate such a possibility by considering
QDs elongated perpendicularly to the coupling direction. In
this configuration, one can expect the overlap between the
electron wavefunctions in the two QDs to increase, which will
enhance their interactions. Our work is mainly motivated by
this thought and also encouraged by the recent proposal of
using coupled elongated QDs to construct robust spin-qubits
with all-electrical qubit manipulation capabilities [14].

In this paper, we perform a detailed analysis of the two-
electron system in coupled elongated QDs to show that the
exchange coupling indeed becomes larger with increasing
aspect ratio between the extensions of each QD perpendicular
and parallel to the coupling direction (r = Ry/Rx ).
Our analysis based on the numerical exact diagonalization
technique indicates that the cause of this enhancement is far
from intuitive, while there is an optimum r value beyond which
the exchange energy J decreases. Furthermore, for r � 5, we
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find that the stability region for one electron in each QD shrinks
to vanishing. Finally, the magnetic field, which defines the
boundary between different spin phases of the system ground
state, decreases with increasing r .

2. Model and method

The Hamiltonian for the coupled QD system is given by

H = Horb + HZ , (1)

Horb = h(r1)+ h(r2)+ C(r1, r2), (2)

h(r) = 1

2m∗

(
p + e

c
A

)2

+ V (r), (3)

C(r1, r2) = e2/ε|r1 − r2|, (4)

HZ = gμB

∑
i

B · Si . (5)

Here, we use the material parameters of GaAs, electron
effective mass m∗ = 0.067me, dielectric constant ε = 12.9
and g-factor g = −0.44. μB is the Bohr magneton and
A = 1

2 [−By, Bx, 0] is the vector potential for the constant
magnetic field B oriented perpendicular to the QD plane (xy
plane). The Zeeman effect simply induces a lowering of the
single-particle (SP) and triplet energies by 13 and 25 μeV T−1,
respectively.

We use the following model potential for the coupled QD
system [15]:

V (r) = −VLe−(x+d/2)2/R2
x +y2/R2

y −VRe−(x−d/2)2/R2
x +y2/R2

y , (6)

where VL and VR are the depth of the left and right
QDs (equivalent to the QD gate voltages in experimental
structures [1]) which can be independently varied, d is the
interdot separation, and Rx and Ry are the radius of each QD
in the x and y directions, respectively. In this work, we fix
Rx = 30 nm and define the QD aspect ratio r = Ry/Rx . A
numerical exact diagonalization technique is used to solve for
the single- and two-electron energies. Details of the method
are published elsewhere [15, 16].

Upon completion of the diagonalization procedure, we
extract the SP energies ei and the two-particle energies ES/T

i .
Here, ‘S’ (‘T’) denotes the singlet (triplet) state (in this paper,
if not otherwise mentioned, ‘singlet’ and ‘triplet’ refer to the
singlet and triplet states lowest in energy, respectively). The
chemical potential of the N th electron is given by the following
equation [1]:

μ(N) = E0(N) − E0(N − 1), (7)

where E0(N) (note that E0(0) = 0) refers to the ground state
energy with N electrons in the system. The exchange energy
is given by

J = ET
0 (2)− ES

0 (2). (8)

For further analysis, the total energy of the two-electron system
is partitioned into the expectation values of the SP energy K
and Coulomb energy C:

ES/T = 〈�S/T
0 |H |�S/T

0 〉 = 〈�S/T
0 |h(r1)+ h(r2)|�S/T

0 〉
+ 〈�S/T

0 |C(r1, r2)|�S/T
0 〉 = K S/T + CS/T, (9)
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Figure 1. Top panels: potential contour plots of coupled QD with
r = 1 (left), r = 4 (middle) and r = 8 (right). Redder (darker gray)
regions correspond to higher potential. Bottom panel: three lowest
singlet (red/gray, solid lines) and triplet (blue/dark gray, dashed lines)
energy levels as a function of QD aspect ratio r . The inset shows r
dependence of the exchange energy J (blue/dark gray, solid) and
tunnel coupling 2t (red/gray, dotted). For all panels,
VL = VR = 25 meV, d = 50 nm, B = 0 T.

while the spectral function is defined as the projection
coefficients of the lowest singlet and triplet states onto the SP
product states [17]:

α
S/T
k,l = 〈ψk(r1)ψl(r2)|�S/T

0 (r1, r2)〉. (10)

The electron density is given by

ρS/T(r1) =
∫

|�S/T
0 (r1, r2)|2 dr2. (11)

Finally, the expectation value of the parity operator is given by

〈P̂S/T〉 = 〈�S/T
0 (x1, y1, x2, y2)|�S/T

0 (−x1,−y1,−x2,−y2)〉,
(12)

and for the parity operator along the y axis

〈P̂S/T
y 〉 = 〈�S/T

0 (x1, y1, x2, y2)|�S/T
0 (x1,−y1, x2,−y2)〉.

(13)

3. Results

3.1. Aspect ratio dependence of the exchange energy

Figure 1 top panels show the potential contour plots r = 1
(left), r = 4 (middle) and r = 8 (right). As r increases, the
potential becomes more elongated in the y direction, while the
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Figure 2. Spectral decomposition of the two-electron wavefunction
onto different single-particle pairs. The red (dark) columns are for
r = 3.9, while the yellow (bright) columns are for r = 4. The inset
shows the contour plots of the lowest three single-particle states in
ascending order (indicated by numbers) of energy for both r = 3.9
and 4. The state symmetry is shown in parentheses.

effective interdot distance (i.e. the x distance between the two
minima of the potential) and the interdot barrier height remain
constant at 40 nm and 1.98 meV, respectively.

In the lower panel of figure 1, we plot the three lowest
singlet (red/gray, solid) and triplet (blue/dark gray, dashed)
energy levels as a function of r . With increasing r , the SP
energies decrease (not shown), resulting in the decrease of the
two-particle energy levels. We note that the lowest energy
of the singlet state (ES

0 (2)) decreases smoothly with r , while
the lowest energy of the triplet state (ET

0 (2)) exhibits a cusp
at r = 3.9 because of the crossing of the lowest two triplet
state energy levels. This cusp results in a sharp variation in the
exchange energy dependence on r , which is shown in the inset
of the lower panel of figure 1. In the same inset, we show the
variation of the tunnel coupling 2t = e1 − e0. For r � 4.3,
the SP ground and first excited states have s and px characters,
respectively, and 2t barely increases from 1.8105 to 1.8114
meV with increasing r , because the energy contributions from
the y direction to e0 and e1 cancel out. For r > 4.3, the SP first
excited state bears a py character, which causes 2t to decrease
monotonically with r .

In order to investigate in detail the cusp in the lowest triplet
state energy, or the crossing between the two lowest triplet
levels in the lower panel of figure 1, we plot in figure 2 the
spectral function of the two-electron wavefunction. It is seen
that at r = 3.9 the triplet mainly consists of the [1, 2] and
[2, 1] SP state pair, while at r = 4 it mainly consists of the
[1, 3] and [3, 1] SP state pair. Here, 1, 2 and 3 denote the SP
states in ascending energy, which have s, px and py characters,
respectively, as shown in figure 2 inset. Since the energy
ordering of these SP states does not change as r changes from
3.9 to 4 (not shown here), the cusp in the lowest triplet state
is due to a sudden transition of the triplet wavefunction from
occupying an spx pair to an spy pair.

Figure 3. (a) Single-particle energy contribution 〈K 〉 as a function of
QD aspect ratio r . The red/gray, solid (blue/dark gray, dashed) line is
for the singlet (triplet) state. (b) Coulomb energy contribution 〈C〉 as
a function of QD aspect ratio r . The red/gray, solid (blue/dark gray,
dashed) line is for the singlet (triplet) state.

In figure 3, we plot separately the (a) SP 〈K 〉 and
(b) Coulomb 〈C〉 contributions to the singlet and triplet state
energies as a function of the QD aspect ratio r . As r increases,
the general trend for all these energy terms is to decrease,
leading to decreasing singlet and triplet energies shown in
figure 1. For the singlet state, both 〈K 〉 and 〈C〉 terms decrease
smoothly with r . For the triplet state, however, a discontinuity
is seen from r = 3.9 to 4: 〈K 〉 (〈C〉) suddenly increases
(decreases) by 0.128 (0.607) meV. It now becomes clear that
the transition of the SP configuration shown in figure 2 from
the spx pair to the spy pair is favored by the lowering of the
Coulomb interaction despite the increase in the SP energy.

As a consequence of the sudden change in the SP occu-
pation, the y symmetry Py of the two-electron wavefunction
of the lowest triplet state changes abruptly from 1 to −1,
which is validated by direct calculation of Py. We point
out that the crossing between the lowest two triplet states by
increasing r is allowed because they possess opposite y sym-
metry, which exemplifies the general von Neumann–Wigner
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theorem relating the molecular energy levels to the two-
electron wavefunction symmetry [18, 19].

The contour plots in figure 4 clearly show that, from
r = 3.9 (first row) to 4 (second row), the electron density
in the lowest singlet state barely changes, while the density
in the lowest triplet state changes abruptly from two peaks
localized in the left and right QDs (the separation of two
peaks in the x direction is ∼40 nm) to four peaks separated
along both x and y directions (separation between peaks in
the x and y directions are 20 and 40 nm, respectively), again
due to the sudden change in the SP configuration. The third
row in figure 4 shows that at r = 8, both the singlet and
triplet densities exhibit four peaks separated in both the x and
y directions. Our analysis shows that, from r = 4 to 8,
the left and right peaks in the singlet state density gradually
separate into four peaks and the separation between the top
two and bottom two peaks in the triplet state density smoothly
increases. Such electron localization effects at large r are
discussed for other many-electron QD systems with weak
confinement, see, for example, [20] and references therein.

3.2. Stability diagrams

In figure 5, upper panels, we plot the stability diagrams [1]
of the coupled QDs for r = 1 (left), r = 3 (middle) and
r = 5 (right) for Rx = 30 nm, d = 50 nm and B = 0 T. The
solid curves indicated by arrows show the computed contours,
where chemical potentials of the first electron (red), the second
electron in the singlet state (green) and second electron in the
triplet state (blue) are equal to the reference value (μ(1) =
μS(2) = μT(2) = −21 meV). According to the general shape
of the stability diagram for coupled QDs [1], we use dotted
straight lines on the diagrams to separate different charge states
indicated by discrete electron numbers on the left and right
QDs, e.g. (0, 1) means zero electrons on the left QD and one
electron on the right QD. Specifically, the boundaries between
the (1, 1) and (0, 2) (or (2, 0)) states are taken extending from
the point on the μS(2) curve at which the curvature is the
largest for VL �= VR, e.g. point C on the upper left panel and
parallel to the main diagonal. In the absence of a magnetic field
(B = 0), the μS(2) curve is the boundary between one and two
electrons in the system (in the linear transport regime wherein
the source and drain chemical potentials are nearly the same).
Based on this fact, we extrapolate from the first off-diagonal
triple point (e.g. point C on the upper left panel) to get the
boundary between two- and three-electron states (green dotted
curve indicated by μ(3)). Here, we assume that the triple point
separation between charge states (1, 0) and (2, 1) (or between
the (0, 1) and (1, 2)) is the same as the separation between the
(0, 0) and (1, 1) states1.

In figure 5, the double–triple point (DTP) separation (i.e.
the separation between the crossing points of μ(1) and μ(2)
curves with VL = VR) is measured to decrease with r : for the
singlet (triplet) state, the DTP separation measured in �VL =
�VR is 5.181 (5.269) meV, 4.128 (4.725) meV and 3.473

1 We emphasize that the boundary between two- and three-electron states are
not computed. In other words, the μ(3) curves on the diagrams are guides to
the eyes to delimit the charge states for two electrons in the coupled QDs.
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Figure 4. Contour plots of the electron density for both singlet (left
column) and triplet (right column). Rows I, II and III are for r = 3.9,
r = 4 and r = 8, respectively. In the plots, redder (darker gray)
regions correspond to lower electron density.

(3.907) meV for r = 1, 3 and 5, respectively. This decreasing
trend of the DTP separation is readily seen by combining the
effects of r on 2t and C shown in the inset of figures 1(b)
and 3(b), respectively. Both quantities decrease with r , leading
to a decreasing DTP separation, which is defined by the sum
2t + C . The decreasing DTP separation suggests that coupling
between the two QDs decreases with r [1]. We note that this
refers to the coupling in either the singlet or the triplet state.
However, the exchange coupling (energy) in this particular case
exhibits a non-monotonic dependence on r (figure 1(b), inset).

One important feature shown in figure 5 is that, as r
increases, the distance between the triple points on the main
diagonal and the first off-diagonal (e.g. points B and C in the
upper left panel of figure 5) becomes smaller and at large r
these triple points coincide. Consequently, the (1, 1) stability
region shrinks and finally disappears. This is because, at large
aspect ratios, even a small amount of interdot detuning can
localize both electrons into the QD with the lower electron
potential energy, resulting in an unstable (1, 1) charge state.
The boundary μT(2) at r = 5 suggests that the (1, 1) charge
state is also unstable for the triplet state, although the μS(2)
and μT(2) curves evolve in different fashion as r increases.

After locating the different charge stable regions on the
stability diagram, we now investigate the interdot detuning
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0

Figure 5. Top panels: stability diagrams for r = 1 (left), r = 3 (middle) and r = 5 (right). In each diagram, the red, green and blue curves
(solid) are computed contour lines at which the chemical potential μ(1), μS(2) and μT(2) is equal to the reference value μref = −21 meV,
respectively. Curves for different chemical potentials are also indicated by arrows. The dotted straight lines are a guide for eyes separating
different stable charge states. Note that the exact locations of the μ(3) curve (green dotted curve) and (1, 2), (2, 1) regions are not computed.
In the left two top panels, the (1, 1) region is indicated by the shaded area. In the leftmost upper panel, we also indicate the double-triple
points A and B. Point C is where the μS(2) curve has the largest curvature for VL �= VR. For corresponding QD aspect ratios, the bottom
panels show J (solid curves) as a function of interdot detuning ε = VL − VR from the center of the (1, 1) region. The dashed curves on the
bottom panels show the separation (�ST) between the contour lines of μS(2) and μT(2) projected along the main diagonal as a function of
interdot detuning ε = VL − VR. All data are obtained at Rx = 30 nm, d = 50 nm and B = 0 T.

effect by departing from the center of the (1, 1) region along
the direction perpendicular to the main diagonal, i.e. VL +
VR = constant. Such detuning effects are important as two
electrons transfer to a single QD, which is a key step in
spin coherent manipulation and spin-to-charge conversion in
two-electron double QD experiments for quantum logic gate
applications [2, 4].

The solid curves in figure 5, lower panels, show the
exchange energy J as a function of interdot detuning ε =
VL − VR along the VL + VR = constant line (ε = 0 is
chosen at the (1, 1) region center). In the case of coupled
circular QDs (r = 1), with increasing ε, both singlet and
triplet states localize progressively into the QD with the lower
electron potential energy, leading to a monotonic increase of
J . Such a dependence is similar to recent experimental [4] and
theoretical [21] results. For r = 3, a sharp cusp in J occurs
at ε ∼ 4 meV before which J monotonically increases with ε.
This cusp is induced by a sudden SP configuration change in
the lowest triplet state, which is similar to the effects seen in
figure 1 and analyzed in figure 2, albeit here the perturbation
in the Hamiltonian is introduced by interdot detuning instead
of deformation effects. More detailed analysis of the two-
particle energies and electron density for the r = 1 and 3
cases can be found in [22]2. For r = 5, we observe that

2 In this reference, the detuning is measured by fixing VR = constant, while
in the text it is measured perpendicular to the main diagonal of the stability
diagram, i.e. VL + VR = constant.

the exchange energy decreases monotonically with ε, because
the Coulomb energy difference between the singlet and triplet
states becomes smaller as the two electrons in both the singlet
and triplet states localize at the opposite ends of the lower
single QD to minimize their Coulomb interaction.

In the lower panels of figure 5, we also plot the ε

dependence of �ST (dashed curves), the difference between
the μS(2) and μT(2) curves projected along the main
diagonal. �ST is relevant in this context because in coupled
QD experiments the chemical potential contour lines are
mapped out by single-electron charging measurements, which
provides useful information on the electronic structure of the
QD [1, 2, 23]. Here, we notice that, although the general
detuning dependence is similar between J and �ST, a linear
factor is not sufficient to scale values of J to overlap with
those of �ST because the two quantities are extracted under
different bias conditions. It should be pointed out that
transport experiments measure the quantity �ST, which differs
quantitatively from the exchange energy J . In figure 6, we
plot the charge stability diagram of the coupled QDs for r = 1
(left), r = 3 (middle) and r = 5 (right) for Rx = 30 nm,
d = 60 nm and B = 0 T. Compared to the data in figure 5,
which correspond to strongly coupled QDs, at d = 60 nm, the
(1, 1) region does not vanish for r = 5 because, as the QDs are
more decoupled, both the interdot distance and interdot barrier
height become larger, which require a larger interdot detuning
to ‘push’ both electrons into the QD with the lower electron
potential energy.
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Figure 6. Stability diagrams for r = 1 (left), r = 3 (middle) and r = 5 (right). In each diagram, the red, green and blue curves (solid) are
computed contour lines at which the chemical potential μ(1), μS(2) and μT(2) equal to the reference value μref = −19 meV, respectively.
Curves for different chemical potentials are also indicated by arrows. The dotted straight lines are a guide for eyes separating different stable
charge states. Note that the exact locations of the μ(3) curve (green dotted curve) and (1, 2), (2, 1) regions are not computed. In each panel,
the (1, 1) region is indicated by the shaded area. All data are obtained at Rx = 30 nm, d = 60 nm and B = 0 T.

3.3. Spin phase diagram

In this section, we discuss the variation of the exchange energy
J as a function of both r and B . By identifying the regions
where J assumes different signs, we construct the spin phase
diagram in which the two-electron ground state spin state
(either S = 0 or 1) is shown as a function of r and B [24, 25].

In figure 7, we plot the exchange energy J as a function of
the QD aspect ratio r and the magnetic field B perpendicular
to the xy plane. At fixed r , as B increases, J decreases from
its value at B = 0 T to become negative and saturate at very
large magnetic field, as previously reported [6–12]. We note
that, at intermediate r (r ∼ 4), J changes much faster with B
than at small or large r . This B-field effect at intermediate r
values is associated with the 2D confinement of the QDs, i.e.
near r = 4 the SP level separations in the x and y directions
are comparable (cf figure 1, lower inset, 2t curve). We also
note that, with increasing r , the relative change of J is small
for B ∼ 1 T, while it is much larger for B ∼ 0 T or B ∼ 2 T.
The kink in J at B = 0 T (cf figure 1, lower inset, J curve),
due to the crossing of two lowest triplet levels, does not exist
for B �= 0 T because a nonzero magnetic field couples the SP
states with different Cartesian symmetries, thereby removing
the condition for the crossing of the lowest two triplet states.
In the investigated ranges of r and B , J assumes a maximum
(minimum) value of 0.773 (−0.372) meV at r ≈ 3.9, B ≈ 0 T
(r ≈ 4.4, B ≈ 1.6 T).

The projected contour plots in figure 7 show that the first
singlet–triplet transition (at which J first crosses zero as B
increases from zero at fixed r ) occurs at a smaller B value as
r increases, which is shown by the thick white dashed curve
on the contour plot in figure 7. Such a dependence can be
understood by observing that, in the absence of the B field,
as r increases the SP energy spacing decreases and, for a larger
r , a smaller magnetic field is needed to further decrease the SP
spacing and bring the triplet state to the ground state with the
aid of the Coulomb energy difference between the singlet and
triplet states. At higher magnetic field and larger r , we observe

Figure 7. Mesh (contour) plot of the exchange energy J as a function
of QD aspect ratio r and the magnetic field B. The thick white
curves (solid and dashed) on the contour plot correspond to J = 0.
Total spin of the two-electron ground state is given in different
regions. Redder (darker gray) regions correspond to lower J value.

another contour line for J = 0 (thick solid white curve at the
lower left corner). The reappearance of the singlet state as
the ground state is reminiscent of the singlet–triplet oscillation
found for a two-electron single QD and also reported elsewhere
for two-electron QDs with strong confinement [24–26]. In the
foregoing discussion, we had not included the Zeeman energy
for the triplet state, which would lower the triplet energy such
that the boundary for the first singlet–triplet transition (thick
white dashed curve) would shift to lower values of r and B ,
while the second singlet–triplet transition (thick white solid
curve) would move to higher values of r and B .
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4. Conclusions

We have shown that the exchange energy between two
electrons in coupled elongated quantum dots is enhanced
by increasing the aspect ratio of the dots in the direction
perpendicular to the coupling direction. However, there is
an optimum aspect ratio beyond which the electron density in
each dot starts to localize and the exchange energy decreases.
With increasing aspect ratio, the (1, 1) region becomes unstable
with respect to interdot detuning, which is undesirable for
two spin-qubit operations. We have also shown that the
exchange energy in symmetrically biased coupled quantum
dots is tunable between maximum (positive) and minimum
(negative) values by varying the magnetic field and the QD
aspect ratio.
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[12] Harju A, Siljamäki S and Nieminen R M 2002 Phys. Rev. B

65 075309
[13] Zhang L-X, Melnikov D V and Leburton J-P 2006 Phys. Rev. B

74 205306
[14] Kyriakydis J and Burkard G 2007 Phys. Rev. B 75 115324
[15] Zhang L-X, Melnikov D V and Leburton J-P 2007 IEEE Trans.

Nanotechnol. 6 250–5
[16] Melnikov D V and Leburton J-P 2006 Phys. Rev. B 73 085320
[17] Melnikov D V and Leburton J-P 2006 Phys. Rev. B

73 155301
[18] von Neumann J and Wigner E 1929 Z. Phys. 30 465–70
[19] Landau L D and Lifshitz E 1977 Quantum Mechanics:

Non-Relativistic Theory (Oxford: Pergamon)
[20] Bednarek S, Chwiej T, Adamowski J and Szafran B 2003

Phys. Rev. B 67 205316
[21] Stopa M and Marcus C M 2008 Nano Lett. 8 1778–82
[22] Zhang L-X, Melnikov D V and Leburton J-P 2008 Phys. Rev. B

78 085310
[23] Johnson A C, Petta J R, Marcus C M, Hanson M P and

Gossard A C 2005 Phys. Rev. B 72 165308
[24] Harju A, Siljamäki S and Nieminen R M 2002 Phys. Rev. Lett.

88 226804
[25] Helle M, Harju A and Nieminen R M 2005 Phys. Rev. B

72 205329
[26] Wagner M, Merkt U and Chaplik A V 1992 Phys. Rev. B

45 1951–4

7

http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1103/PhysRevLett.97.056801
http://dx.doi.org/10.1103/PhysRevB.59.2070
http://dx.doi.org/10.1103/PhysRevB.72.205432
http://dx.doi.org/10.1103/PhysRevA.61.062301
http://dx.doi.org/10.1103/PhysRevB.70.205318
http://dx.doi.org/10.1103/PhysRevB.76.125323
http://dx.doi.org/10.1103/PhysRevB.65.075309
http://dx.doi.org/10.1103/PhysRevB.74.205306
http://dx.doi.org/10.1103/PhysRevB.75.115324
http://dx.doi.org/10.1109/TNANO.2007.891832
http://dx.doi.org/10.1103/PhysRevB.73.085320
http://dx.doi.org/10.1103/PhysRevB.73.155301
http://dx.doi.org/10.1103/PhysRevB.67.205316
http://dx.doi.org/10.1021/nl801282t
http://dx.doi.org/10.1103/PhysRevB.78.085310
http://dx.doi.org/10.1103/PhysRevB.72.165308
http://dx.doi.org/10.1103/PhysRevLett.88.226804
http://dx.doi.org/10.1103/PhysRevB.72.205329
http://dx.doi.org/10.1103/PhysRevB.45.1951

	1. Introduction
	2. Model and method
	3. Results
	3.1. Aspect ratio dependence of the exchange energy
	3.2. Stability diagrams
	3.3. Spin phase diagram

	4. Conclusions
	Acknowledgments
	References

